In This Issue

Calendar of Events 1
Beef Management Calendar 2
E-mail Updates 2
IFAS CEU Day 3
Control of Winter Weeds in Hay Fields 3
Cause of Seg 2 Peanuts in Last Year 3
Peanut Variety Situation 6
2010 Cotton Seed Company Varieties Southeast 7
Cotton Seed Cost Calculator and Cotton Weed Control Cost Calculator 8
2009 Cotton Variety Demonstration Mickey Diamond 8
2009 Cotton Variety Demonstration WFREC 9
Renewal Santa Rosa County Ag. Sheet Newsletter 10
Small Farm Tomato Production and Marketing 11
Crop Production Meeting 12

We’re on the Web:
http://santarosa.ifas.ufl.edu

The Santa Rosa Ag. Sheet Newsletter is available at:
http://santarosa.ifas.ufl.edu/agriculture.shtml

The Foundation for The Gator Nation
An Equal Opportunity Institution

Calendar of Events

March

22 Crop Production Meeting
Jay Community Center
9:00 a.m.—2:30 p.m.
For more information see flyer

23 Small Farm Tomato Production and Marketing
(For more info. call 623-3868)

25 Beef Cattle/Forage Field Day
North Florida Research & Education Center Beef Unit Marianna
8:00 a.m.—3:00 p.m. For More Information
Call: (850) 394-9124

30 IFAS CEU Day
Jay and Milton Extension Offices
7:30 a.m.-3:00 p.m.

APRIL

10 ADOP-A-THON - Santa Rosa County Animal Services (call 983-4680

MAY

5-7 Florida Beef Cattle Short Course
March

- Fertilize pasture to stimulate early growth and get fertilizer incorporated in grass roots while there is still good soil moisture.
- Prepare land for summer crops.
- Begin grazing warm season permanent pastures.
- Check and fill mineral feeder.
- Observe bulls for condition and success. Rotate and rest if needed.
- Deworm cows as needed.
- Make sure calves are healthy and making good weight gains.
- Hang forced-use dust bags by April 1st for external parasite control or use insecticide impregnated ear tags.
- Identify, vaccinate, implant, and work late calves.
- Put bulls out March 1st for calving season to start December 9.
- Remove bulls March 22nd to end calving season January 1.

April

- Plant warm season annual pastures.
- Plant corn for silage.
- Check and fill mineral feeder.
- Check dust bags or apply treated ear tags.
- Check for external parasites and treat if necessary.
- Observe cows for repeat breeders.
- Deworm cows as needed if not done in March.
- Vaccinate against blackleg and brucellosis after 3 months of age and before 12 months of age.
- Market cull cows and bulls.
- Update market information and refine market strategy for calves.

E-MAIL UPDATES

E-mail is the best way to stay current on upcoming programs, news and opportunities for farmers and landowners in Santa Rosa County. If you don’t receive email updates yet and are interested, simply send your email address to Mike Donahoe at miked@santarosa.fl.gov or John Atkins at jdatkins@ifas.ufl.edu. We will not burden you with a lot of unnecessary information and we don’t share email with others, except as required by state law as a public agency.
An opportunity for licensed pesticide applicators to earn CEUs will be held March 30, 2010 from 7:30 to 3:00 CST. The event will be conducted via Polycom from participating UF/IFAS county extension offices, several main campus sites and research and education centers. An applicator will be able to attend any or all of the 6 sections for pesticide licensing recertification credit. A total of 6 FDACS approved CEUs are available for the entire day in the following categories: Credit for Certified Crop Advisors has been applied for and is pending approval. If interested in attending, contact Santa Rosa County Extension Office at (850) 676-6654 or 623-3868

- Agricultural Row Crop
- Agricultural Tree Crop
- Aquatic Pest Control
- Demonstration and Research
- Forest Pest Control
- Natural Areas Weed Control
- Private Applicator Agriculture
- Right-of-Way Pest Control
- Pest Control Operator-Lawn & Ornamental
- Limited Commercial Landscape Maintenance
- Limited Commercial Landscape Maintenance
- Ornamental & Turf

Source: Dr. Fred Fishel, Pesticide Information Director, weeddr@ufl.edu

Control of Winter Weeds in Hay Fields

Winter weeds are always a problem early in the spring, but the lifecycle is over soon after the first hay cutting. The first hay cutting often serves to remove these winter weeds to aid in increasing the quality of subsequent harvests. Since winter weeds don't linger, we have come to accept that hay bales from the first cutting are typically weed infested and low in quality. With the frequent rain that the state has received this fall, winter weeds will be more prevalent than normal. Taking steps now to reduce the winter weed infestations will result in better quality hay. There are many herbicide options that will effectively control these winter weeds and increase the quality of the hay from the first cutting. Below is a short list of products that I have found to be valuable for control of winter weeds.

Glyphosate

In north Florida, where bermudagrass goes completely dormant in the winter, glyphosate can be highly effective and cost less than $5 per acre. Apply 11-16 oz/A (see product label for specific use rate) for control of winter grasses (except ryegrass) and broadleaf weeds. If wild radish or cutleaf evening primrose is present, the addition of 1-2 pt/A 2,4-D will be necessary. Do not apply glyphosate if bermudagrass has any green tissue present. Glyphosate applied to bermudagrass during transition will delay greenup and extend the first cutting. If the grass is starting to transition, Gramoxone Inteon (40 day cutting restriction) can be substituted for glyphosate. Broadcast applications of glyphosate are not recommended in hayfields in south Florida because many of these fields never go totally dormant.

Metsulfuron

Metsulfuron, formerly sold as Cimarron, is now available under a variety of trade names. This herbicide is fairly inexpensive and effective on a wide variety of broadleaf weeds. Wild radish, chickweed, and red sorrel are very sensitive to this herbicide. Bermudagrass injury is not a concern with this herbicide and it can be applied at any time since there are no grazing or haying restrictions.
Chaparral

Chaparral is a relatively new herbicide that combines metsulfuron and aminopyralid (the active ingredient in Milestone). Metsulfuron controls many winter weeds, as noted above, while the aminopyralid component improves control of thistles, cudweed, Carolina geranium, and fireweed. The combination of these herbicides will likely control a majority of the broadleaf weeds present on a given hayfield.

2,4-D

2,4-D is often the least expensive way to control a variety of troublesome broadleaf weeds. This herbicide will be effective on pepperweed, wild radish, cutleaf evening primrose, and small thistles. Application rates in excess of 1 qt/A will be necessary if the wild radish is blooming or if thistles are greater than 12” in diameter. 2,4-D will not adequately control fireweed or red sorrel.

For optimum control of sensitive weeds, it is best to use the ester formulation when applying during cooler temperatures.

Winter weed control can be relatively easy and inexpensive. Removing these weeds will allow the bermudagrass to transition from dormancy more quickly, and greatly improve the quality of the first hay harvest.

Source: Dr. Jason Ferrell, UF/IFAS Extension Weed Specialist & Dr. Brent Sellers, Extension Agronomist Ona RCREC

Cause of Seg 2 Peanuts in Last Year

We had an unusually high number of loads of peanuts in 2009 that were graded by Federal-State Inspection Service (FSIS) graders as Seg 2. A peanut load that is classified as Seg 2 is one that has 3% or more damaged kernels in the grade sample. A Seg 2 load of peanuts has a value of approximately $130 per ton, well below the market loan value of $355 per ton. The most disappointing aspect of this unusually high number of Seg 2 loads is that they came from fields in which the producer had a very good yield per acre. Another negative impact from the Seg 2 loads is that many of our peanuts are now transported in 21-foot trailers or semi-trailers compared to the 14-foot trailers that many producers have used in the past. A Seg 2 load from a 21-foot or semi trailer means a much larger volume of peanuts were affected.

Typically, Seg 2 peanuts are associated with freeze damage. More often than not, Seg 2 loads are more common in North Carolina, Virginia, Oklahoma, and west Texas where the threat of freezing temperatures occur earlier in the fall. The greatest threat of freeze damage is on peanuts that have been dug less than 48 hours when the freezing temperatures are reached. We had a few cases in 2009 in south Georgia when there were fields that had just been dug when there was a threat of freezing temperatures. However, the Seg 2 loads of peanuts in Georgia in 2009 were not associated with freeze damage.

Another cause of damage that can result in a load of peanuts being graded Seg 2 is from excessive insect damage. Over the past few years we have begun to see more damage from burrower bug. When burrower bug damage is excessive enough in a field, the level of damage can be high enough to reach 3% or higher in the grade sample and cause the load to be categorized as Seg 2.

This past harvest season I had samples of damaged peanuts from loads graded by FSIS as Seg 2 sent to me from Early, Brooks, Evans, and Coffee Counties as well as numerous samples from a buying point that had trailer loads from Tifton, Turner, and Irwin Counties. I also had calls from several other county agents that
mentioned the higher number than usual of Seg 2 loads in their counties. After examining these samples closely Dr. David Adams and I both determined that burrower bug damage was a minor problem in these samples. Based on discussion with the county agents, it was also determined that the damage in these samples was not a result of freeze damage. The image below is from one of the samples.

![Image of peanuts with damage]

So the question is “what caused the significantly higher level of damage in these peanuts that the trailer loads would be graded as Seg 2 peanuts?” One theory we are following up on is that the damage is associated with insufficient levels of calcium. Every one of the samples sent to me from across the state and the ones I received calls about were either Georgia-06G or Florida-07. Both of these cultivars are large-seeded runner cultivars and are much larger than Georgia Green and significantly larger than even the medium seed size cultivars, i.e., Georgia-02C. Other larger-seeded cultivars include Tifguard and Georgia-07W. Do I think there is an inherited trait that caused Georgia-06G and Florida-07 to be more susceptible to Seg 2 damage? NO! Could the much larger seed and pod size be a potential factor in these cultivars being at risk of higher levels of damage? Very likely. We do know that calcium requirement for a peanut is tied to the size of the seed and size and thickness of the hull. Therefore, larger-seeded cultivars need a higher level of calcium. Dr. Glen Harris and I have on-going research to address the cultivar and seed size relationship with calcium requirement. One aspect we haven’t been able to confirm is the potential relationship of these large-seeded cultivars and damaged kernels. We will be looking very closely at the grade samples from our calcium and cultivar research trials to see if we have a higher level of damage kernels compared to medium and small runner seed size cultivars.

For now, we need to encourage producers that plant any of the large-seeded cultivars (Georgia-06G, Florida-07, Tifguard, and Georgia-07W) to be sure and apply gypsum (landplaster) if there pegging zone calcium level is below 1,000 pounds per acre. We are hypothesizing that the Seg 2 loads and higher percentage of damaged kernels are a result of insufficient calcium. We will continue to investigate this situation.

Source: John Beasley, University of Georgia
Peanut Variety Situation

A major question on many producers’ minds is which of the new cultivars to plant. There is logical reasoning that producers should consider more than one cultivar to plant. There are several excellent cultivars to select from. Most of these new cultivars have been available for only two to three years.

Based on the acreage that was planted in 2009 for seed production for the 2010 crop, Georgia-06G will be the cultivar with the highest seed availability. Florida-07 and Tifguard will be the next two cultivars in regards to seed supply. The pie chart above shows the percent of acreage planted in Georgia, Alabama, and Florida in 2009 to produce seed for 2010.

Georgia Green was planted on only 10 percent of the seed production acreage in 2009 indicating that it will be available in limited quantities in 2010. It will be the first time since 1997 that Georgia Green wasn’t the cultivar with the highest percentage of seed for planting. Georgia Greener and Georgia-07W are cultivars that are on the increase. Their seed increase was a year or two behind Georgia-06G, Florida-07, and Tifguard. Based on the above numbers, it looks as if Georgia-06G, Florida-07, and Tifguard will account for Georgia Green was planted on only 10 percent of the seed production acreage in 2009 indicating that it will be available in limited quantities in 2010. It will be the first time since 1997 that Georgia Green wasn’t the cultivar with the highest percentage of seed for planting. Georgia Greener and Georgia-07W are cultivars that are on the increase. Their seed increase was a year or two behind Georgia-06G, Florida-07, and Tifguard. Based on the above numbers, it looks as if Georgia-06G, Florida-07, and Tifguard will account for approximately 70% of the 2010 seed supply with Georgia-07W, Georgia Greener, Georgia-02C, and Georgia Green accounting for 25% or more of the seed supply. We expect AP-4 and AT 215 to account for 1-2% of the seed supply.
2010 Cotton Seed Company Varieties for the Southeast
Major seed company varieties that have been tested in university or on-farm trials are listed below. Check with dealers on local availability of seed. Varieties should be “custom fit” for each field based on soil type, planting date, and other local conditions. It is best to review at least two years of university data or local on-farm experience before planting more than a few acres of a new variety. Plant several varieties in order to spread your risk.

2009 University Cotton Official Variety Trial (OVT) results are available online:
Auburn University http://www.alabamacrops.com
University of Georgia http://commodities.caes.uga.edu/fieldcrops/cotton/
Mississippi State University http://msucares.com/pubs/crops3.html

DeltaPine

<table>
<thead>
<tr>
<th>Variety</th>
<th>Type</th>
<th>E</th>
<th>M-F*</th>
<th>E-M*</th>
<th>E-M</th>
</tr>
</thead>
<tbody>
<tr>
<td>DP 0912 B2RF</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP 0920 B2RF</td>
<td>E-M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP 0924 B2RF</td>
<td>E-M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP 0935 B2RF</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP 0949 B2RF</td>
<td>M-F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP 1028 B2RF (new)</td>
<td>E-M**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP 1032 B2RF (new)</td>
<td>M**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP 1034 B2RF (new)</td>
<td>M**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP 1048 B2RF (new)</td>
<td>M-F*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP 1050 B2RF (new)</td>
<td>F*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP 141 B2RF</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP 161 B2RF</td>
<td>M-F*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP 121 RF</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP 174 RF</td>
<td>M-F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Phytenogen

<table>
<thead>
<tr>
<th>Variety</th>
<th>Type</th>
<th>E</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHY 315 RF</td>
<td>E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHY 370 WR</td>
<td>E*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHY 375 WRF</td>
<td>E-M*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHY 425 RF</td>
<td>E-M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHY 440 W</td>
<td>E-M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHY 480 WR</td>
<td>E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHY 485 WRF</td>
<td>E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHY 367 WRF (new)</td>
<td>E*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHY 525 RF (new)</td>
<td>M-F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHY 565 WRF (new)</td>
<td>M-F*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fibermax and Stoneville

<table>
<thead>
<tr>
<th>Variety</th>
<th>Type</th>
<th>E-M</th>
<th>M-F*</th>
</tr>
</thead>
<tbody>
<tr>
<td>FM 1740 B2RF</td>
<td>E-M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 4288 B2RF</td>
<td>E-M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 5288 B2RF</td>
<td>M-F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 5458 B2RF</td>
<td>M-F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FM 1845 LLB2</td>
<td>M-F*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FM 1735 LLB2</td>
<td>E-M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FM 1773 LLB2 (new)</td>
<td>E-M</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cropland Genetics

<table>
<thead>
<tr>
<th>Variety</th>
<th>Type</th>
<th>E-M</th>
</tr>
</thead>
<tbody>
<tr>
<td>CG 4020B2RF</td>
<td>E-M</td>
<td></td>
</tr>
<tr>
<td>CG 3220B2RF</td>
<td>E-M</td>
<td></td>
</tr>
<tr>
<td>CG 2035 B2RF</td>
<td>E-M</td>
<td></td>
</tr>
</tbody>
</table>

Dyna-Gro

<table>
<thead>
<tr>
<th>Variety</th>
<th>Type</th>
<th>E-M</th>
</tr>
</thead>
<tbody>
<tr>
<td>DG 2570B2RF</td>
<td>E-M</td>
<td></td>
</tr>
</tbody>
</table>

*Limited seed supply.
** Most of seed going to West Texas or other regions.
Cotton Seed Cost Calculator and Cotton Weed Control Cost Calculator
The University of Georgia has developed a spreadsheet tool that allows growers to calculate the cost per acre for cotton seed including technology fees and other costs such as seed treatments. The web site is http://commodities.caes.uga.edu/fieldcrops/cotton/. The program calculates the seed/acre, acres/bag of seed, and cost /acre based on row spacing, seed rate, and seed per bag. Up to five varieties can be compared side-by-side. For example:
Deltapine – 250,000 seed/bag
Phytogen – 230,000 seed/bag
FiberMax and Stoneville – 220,000 seed/bag

The Weed Control Cost Calculator, available at the same web site, allows the user to develop up to three herbicide regimes side-by-side. These can be different programs for up to three crops or three alternative programs for the same crop.

2009 Cotton Variety Demonstration
Mickey Diamond Farm, Jay, FL
Reported by Mike Donahoe, Santa Rosa County Extension

<table>
<thead>
<tr>
<th>Variety</th>
<th>Maturity</th>
<th>Lint Yield (lbs/acre)</th>
<th>Lint (%)</th>
<th>Mic</th>
<th>Staple (32nds)</th>
<th>Strength (g/tex)</th>
<th>Uniformity (%)</th>
<th>Vigor</th>
<th>Stringout</th>
</tr>
</thead>
<tbody>
<tr>
<td>DP 0949 B2RF</td>
<td>M-F</td>
<td>824</td>
<td>43.4</td>
<td>5.0</td>
<td>35.2</td>
<td>27.6</td>
<td>80.5</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>DP 555 BR</td>
<td>M-F</td>
<td>750</td>
<td>41.0</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>3.0</td>
<td>2.0</td>
</tr>
<tr>
<td>ST 5458 B2RF</td>
<td>M</td>
<td>724</td>
<td>41.0</td>
<td>4.7</td>
<td>35.2</td>
<td>27.8</td>
<td>81.0</td>
<td>2.5</td>
<td>3.0</td>
</tr>
<tr>
<td>ST 5288 B2RF</td>
<td>M</td>
<td>722</td>
<td>41.0</td>
<td>4.7</td>
<td>35.5</td>
<td>28.1</td>
<td>79.4</td>
<td>2.5</td>
<td>2.0</td>
</tr>
<tr>
<td>ST 4288 B2RF</td>
<td>E-M</td>
<td>705</td>
<td>37.8</td>
<td>4.6</td>
<td>36.5</td>
<td>27.3</td>
<td>80.7</td>
<td>2.0</td>
<td>3.0</td>
</tr>
<tr>
<td>ST 5458 B2RF</td>
<td>M</td>
<td>695</td>
<td>40.0</td>
<td>4.3</td>
<td>33.9</td>
<td>25.0</td>
<td>79.7</td>
<td>3.0</td>
<td>2.5</td>
</tr>
<tr>
<td>DP 0935 B2RF</td>
<td>M</td>
<td>669</td>
<td>41.0</td>
<td>4.8</td>
<td>34.2</td>
<td>25.8</td>
<td>81.2</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>DP 0912 B2RF</td>
<td>E</td>
<td>669</td>
<td>41.0</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>2.5</td>
<td>2.0</td>
</tr>
<tr>
<td>DP 0920 B2RF</td>
<td>E-M</td>
<td>652</td>
<td>41.0</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>2.5</td>
<td>2.0</td>
</tr>
<tr>
<td>PHY 480 WR</td>
<td>E-M</td>
<td>588</td>
<td>39.4</td>
<td>4.4</td>
<td>34.9</td>
<td>27.9</td>
<td>81.5</td>
<td>2.0</td>
<td>2.2</td>
</tr>
<tr>
<td>DP 0924 B2RF</td>
<td>E-M</td>
<td>587</td>
<td>37.6</td>
<td>4.6</td>
<td>34.6</td>
<td>24.6</td>
<td>80.0</td>
<td>2.5</td>
<td>2.0</td>
</tr>
<tr>
<td>FM 1740 B2RF</td>
<td>E-M</td>
<td>575</td>
<td>38.9</td>
<td>4.5</td>
<td>33.6</td>
<td>27.3</td>
<td>78.4</td>
<td>2.5</td>
<td>2.0</td>
</tr>
<tr>
<td>PHY 370 WR</td>
<td>E</td>
<td>560</td>
<td>39.4</td>
<td>4.7</td>
<td>33.9</td>
<td>29.1</td>
<td>82.4</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>PHY 485 WRF</td>
<td>E-M</td>
<td>532</td>
<td>37.8</td>
<td>4.6</td>
<td>35.5</td>
<td>28.2</td>
<td>82.3</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>PHY 375 WRF</td>
<td>E</td>
<td>506</td>
<td>42.3</td>
<td>4.6</td>
<td>34.9</td>
<td>28.7</td>
<td>81.2</td>
<td>2.5</td>
<td>2.8</td>
</tr>
</tbody>
</table>

Maturity: E=Early, E-M=Early/Mid, M=Mid, M-F=Mid/Full
Vigor, Stringout ratings: 1 to 5, 1=best
Trial Type: Side by side strips
Average Plot Size: 0.69 ac.
Plant Date: 5/11/09
Rows/Plot: 4
Row Spacing: 36 inches
Tillage: Strip-Till
Soil Type: Red Bay sandy loam
Harvest Date: 11/3/09
2009 Cotton Variety Demonstration
West Florida Research and Education Center
Reported by Mike Donahoe, Santa Rosa County Extension

<table>
<thead>
<tr>
<th>Variety</th>
<th>Maturity</th>
<th>Lint Yield (lb/acre)</th>
<th>Lint (%)</th>
<th>Mic</th>
<th>Staple (inches)</th>
<th>Strength (g/tex)</th>
<th>Uniformity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DP 0949 B2RF</td>
<td>M-F</td>
<td>995</td>
<td>45.3</td>
<td>4.7</td>
<td>1.11</td>
<td>29.1</td>
<td>80.1</td>
</tr>
<tr>
<td>PHY 375 WRF</td>
<td>E</td>
<td>949</td>
<td>48.3</td>
<td>4.5</td>
<td>1.07</td>
<td>25.4</td>
<td>79.9</td>
</tr>
<tr>
<td>PHY 370 WR</td>
<td>E</td>
<td>926</td>
<td>46.2</td>
<td>4.1</td>
<td>1.12</td>
<td>29.0</td>
<td>79.8</td>
</tr>
<tr>
<td>DP 555 BR</td>
<td>M-F</td>
<td>925</td>
<td>48.6</td>
<td>4.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 4288 B2RF</td>
<td>E-M</td>
<td>853</td>
<td>43.7</td>
<td>4.6</td>
<td>1.13</td>
<td>28.3</td>
<td>80.0</td>
</tr>
<tr>
<td>DP 0924 B2RF</td>
<td>E-M</td>
<td>821</td>
<td>44.0</td>
<td>4.6</td>
<td>1.07</td>
<td>27.5</td>
<td>82.0</td>
</tr>
<tr>
<td>DP 0935 B2RF</td>
<td>M</td>
<td>815</td>
<td>46.1</td>
<td>4.3</td>
<td>1.10</td>
<td>27.1</td>
<td>80.3</td>
</tr>
<tr>
<td>ST 5458 B2RF</td>
<td>M</td>
<td>807</td>
<td>44.3</td>
<td>4.4</td>
<td>1.15</td>
<td>28.6</td>
<td>81.2</td>
</tr>
<tr>
<td>DP 0912 B2RF</td>
<td>E</td>
<td>806</td>
<td>43.7</td>
<td>5.0</td>
<td>1.12</td>
<td>26.8</td>
<td>82.2</td>
</tr>
<tr>
<td>ST 5288 B2RF</td>
<td>M</td>
<td>799</td>
<td>44.7</td>
<td>4.6</td>
<td>1.11</td>
<td>27.6</td>
<td>81.9</td>
</tr>
<tr>
<td>FM 1740 B2RF</td>
<td>E-M</td>
<td>756</td>
<td>44.4</td>
<td>4.5</td>
<td>1.10</td>
<td>27.7</td>
<td>81.7</td>
</tr>
<tr>
<td>PHY 485 WRF</td>
<td>E-M</td>
<td>728</td>
<td>43.4</td>
<td>4.5</td>
<td>1.11</td>
<td>29.4</td>
<td>82.6</td>
</tr>
<tr>
<td>PHY 480 WR</td>
<td>E-M</td>
<td>707</td>
<td>43.2</td>
<td>4.6</td>
<td>1.11</td>
<td>28.3</td>
<td>81.9</td>
</tr>
<tr>
<td>DP 0920 B2RF</td>
<td>E-M</td>
<td>676</td>
<td>46.3</td>
<td>4.3</td>
<td>1.06</td>
<td>25.5</td>
<td>79.0</td>
</tr>
</tbody>
</table>

Maturity: E=Early, E-M=Early/Mid, M=Mid, M-F=Mid/Full

Trial Type: Side by side strips
Average Plot Size: 0.72 ac.
Plant Date: 5/20/09
Harvest Date: 11/19/09
Rows/Plot: 8
Row Spacing: 36 inches
Tillage: Conventional
Soil Type: Red Bay sandy loam
Fertilizer: 80 lb. total N, 200 lb K-Mag sidedress
Pix: 2 - 16 oz. appl. beginning at 1st bloom.
The use of trade names in this publication is solely for the purpose of providing specific information. It is not a guarantee, warranty, or endorsement of the product names and does not signify that they are approved to the exclusion of others.

Sincerely,

Mike Donahoe
County Director
Santa Rosa County

John D. Atkins
Extension Agent
Santa Rosa County

RENEWAL FORM

SANTA ROSA COUNTY AG SHEET NEWSLETTER

Government regulations require us to periodically purge our mailing lists. You may renew this newsletter by: Neatly fill in this sheet and mailing it to the Santa Rosa County Extension Office at P.O. Box 37, Jay, FL 32565 or calling us at (850) 675-6654 and providing your name and mailing address. Due to budget cuts, we encourage you to allow us to send you the newsletter through your email. To receive an electronic copy, send an email with your name and email address to janiskay@ufl.edu. Deadline for renewal is March 31, 2010. If a renewal is not received, you will be automatically removed from our mailing list.

NAME__

ADDRESS___

CITY__________________________STATE_______ZIP___________________

E-MAIL ADDRESS___
Small Farm Tomato Production and Marketing
Tuesday, March 23, 6:00-8:00 p.m.
Reservation required by Monday, March 22 at Noon.
Santa Rosa County Extension Auditorium
6263 Dogwood Drive
Milton, Florida
Telephone: 850-623-3868

Topics:
- Varieties
- Fertilizing
- Pest Control
- Marketing

Speakers:
- Dan Mullins
 Extension Agent
 Santa Rosa County
- Larry Williams
 Extension Agent
 Okaloosa County

For persons with disabilities requiring special accommodations, please contact the Santa Rosa County Extension Service at lease five (5) working days prior to the program so that proper consideration may be given to the request.

The Foundation for The Gator Nation
An Equal Opportunity Institution
Crop Production Meeting
Monday, March 22, 2010
9:00 a.m.-2:30 p.m.
Jay Community Center
5259 Booker Lane
Jay, Florida

9:00 – 9:15
Registration

9:15 – 9:30
FSA / NRCS Up-dates
Travis Kelley, Santa Rosa County Farm Service Agency Director
Trent Mathews, NRCS District Conservationist

9:30 - 9:45
Economic Outlook
Steve Brown, Auburn University Economist

9:45 – 10:35
Weed Management Options in Peanuts, Cotton, Soybeans, Corn and Wheat
Jay Ferrell, Extension Weed Specialist, University of Florida, IFAS

10:35 – 10:50
Break

10:50 – 11:20
Peanut Variety Up-date
Barry Tillman, Extension Peanut Specialist, University of Florida, IFAS

11:20 - 11:40
Cotton Variety Up-date
Mike Donahoe, Santa Rosa County Extension Director, UF / IFAS

11:40 - 12:00
Alternative Crop Production
Dan Mullins, Santa Rosa County Extension Agent, UF / IFAS

12:00 - 12:45
Sponsored Lunch (Industry Updates)
Ken Barton, Florida Peanut Producers Association Up-date

12:45 – 1:35
Production Practices to Reduce Pesticide Use in Peanuts, Cotton, Soybeans, Corn and Wheat
David Wright, Extension Agronomist, University of Florida, IFAS

1:35 – 2:30
Disease Control Recommendations for Peanuts, Cotton, Corn and Soybeans
Robert (Bob) Kemerait, Plant Pathologist, University of Georgia

2:30
Adjourn

Please call the County Extension Office at 675.6654 to pre-register by Friday, March 19th.
CEU’s will be available.