April, 2008

DATES TO REMEMBER

Ethanol Plant Information Meeting………………………………………………April 24, 2008
Milton Extension Office 6:00 PM

Northwest Florida Cattlemen’s Supper……………………………………..May 8, 2008
Jay Community Center (For more information call 675-6654) 7:00 PM

How to Prepare Horses and Stables for Hurricanes…………………………May 8, 2008
Milton Extension Office (For more information call 675-6654) 6:30 to 8:30 PM

IN THIS ISSUE

Beef Cattle Management Calendar………………………………………………..2
Cotton Variety Demonstration Results…………………………………………3
Cotton……………………………………………………………………………5
Soybeans………………………………………………………………………8
Disease Consideration for Planting Peanuts in 2008…………………………10
Ethanol Plant Information Meeting……………………………………………11
Beef Cattle Management Calendar

April

--Plant Warm season annual pastures.
--Plant corn for silage.
--Check and fill mineral feeders
--Check dust bags or apply treated ear tags.
--Check for external parasites and treat if necessary.
--Observe cows for repeat breeders
--Deworm cows as needed if not done in March
--Vaccinate against blackleg and brucellosis after 3 months of age and before 12 months of age.
--Market cull cows and bulls.
--Update market information and refine market strategy for calves.

MAY

--Remove bulls.
--Harvest hay from cool season crops.
--Plant warm season perennial pastures.
--Fertilize warm season pastures.
--Check mineral feeder.
--Check for spittlebugs and treat if necessary.
--Apply spot-on agents for grub and louse control.
--Re-implant calves with growth stimulant at 90-120 days, when you have herd penned.
--Dispose of dead animals properly.
--Update market information and refine marketing plans.
--Remove bulls May 21 to end calving season March 1.

JUNE

-- Last date for planting sorghum.
-- Check mineral feeder, use at least 8% phosphorus in mineral and not over 22 to 1 calcium to phosphorus ratio.
-- Check pastures and hay field for spittlebugs, mole crickets, and army worms. Treat if necessary; best month for mole cricket control.
-- Check dust bags.
-- Watch for evidence of pinkeye and treat.
-- Utilize available veterinary services and diagnostic laboratories.
-- Get heifers vaccinated for brucellosis if not already done.
-- Pregnancy check cows.
-- Update market information and plans.
-- Make first cutting of hay.
-- Put bulls out June 1 for calves starting March 11.
-- Reimplant calves at 90 to 120 days with growth stimulant.
2007 Cotton Variety Demonstration
West Florida Research and Education Center

Conventional Tillage

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Crop Value ($/acre)</th>
<th>Lint Yield (lbs/acre)</th>
<th>Loan Price ($/lb)</th>
<th>% Turnout</th>
<th>Staple (32nds)</th>
<th>Fiber Length (inches)</th>
<th>Fiber Strength (g/tex)</th>
<th>Mic</th>
<th>Leaf</th>
<th>% Unif</th>
<th>Color Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>DP555BR</td>
<td>$468</td>
<td>949</td>
<td>0.49</td>
<td>41.9</td>
<td>34.2</td>
<td>1.07</td>
<td>30.2</td>
<td>4.8</td>
<td>1</td>
<td>79.4</td>
<td>51</td>
</tr>
<tr>
<td>DP454BR</td>
<td>$423</td>
<td>799</td>
<td>0.53</td>
<td>41.8</td>
<td>33.6</td>
<td>1.05</td>
<td>28.8</td>
<td>4.5</td>
<td>2</td>
<td>81.5</td>
<td>41</td>
</tr>
<tr>
<td>DP147RF</td>
<td>$379</td>
<td>687</td>
<td>0.55</td>
<td>38.8</td>
<td>36.2</td>
<td>1.13</td>
<td>30.1</td>
<td>4.5</td>
<td>2</td>
<td>80.8</td>
<td>41</td>
</tr>
<tr>
<td>DP143B2RF</td>
<td>$360</td>
<td>661</td>
<td>0.54</td>
<td>36.9</td>
<td>36.2</td>
<td>1.13</td>
<td>29.8</td>
<td>4.4</td>
<td>1</td>
<td>77.5</td>
<td>41</td>
</tr>
<tr>
<td>FM960BR</td>
<td>$337</td>
<td>609</td>
<td>0.55</td>
<td>39.2</td>
<td>35.8</td>
<td>1.12</td>
<td>34.5</td>
<td>4.8</td>
<td>2</td>
<td>81.0</td>
<td>41</td>
</tr>
<tr>
<td>PHY370WR</td>
<td>$289</td>
<td>586</td>
<td>0.49</td>
<td>40.7</td>
<td>33.6</td>
<td>1.05</td>
<td>28.6</td>
<td>5.4</td>
<td>2</td>
<td>81.6</td>
<td>41</td>
</tr>
<tr>
<td>DP164B2RF</td>
<td>$313</td>
<td>571</td>
<td>0.55</td>
<td>36.3</td>
<td>35.8</td>
<td>1.12</td>
<td>28.6</td>
<td>4.5</td>
<td>1</td>
<td>79.7</td>
<td>41</td>
</tr>
<tr>
<td>PHY485WRF</td>
<td>$267</td>
<td>569</td>
<td>0.47</td>
<td>39.9</td>
<td>33.3</td>
<td>1.04</td>
<td>31.4</td>
<td>5.3</td>
<td>4</td>
<td>79.9</td>
<td>41</td>
</tr>
<tr>
<td>DP515BR</td>
<td>$308</td>
<td>559</td>
<td>0.55</td>
<td>40.3</td>
<td>35.5</td>
<td>1.11</td>
<td>29.9</td>
<td>4.8</td>
<td>2</td>
<td>80.9</td>
<td>41</td>
</tr>
<tr>
<td>FM9063B2F</td>
<td>$305</td>
<td>551</td>
<td>0.55</td>
<td>36.7</td>
<td>36.8</td>
<td>1.15</td>
<td>32.3</td>
<td>4.9</td>
<td>1</td>
<td>81.7</td>
<td>41</td>
</tr>
<tr>
<td>ST4427B2RF</td>
<td>$237</td>
<td>512</td>
<td>0.46</td>
<td>38.1</td>
<td>32.6</td>
<td>1.02</td>
<td>27.7</td>
<td>5.0</td>
<td>1</td>
<td>79.7</td>
<td>51</td>
</tr>
<tr>
<td>ST6611B2RF</td>
<td>$250</td>
<td>511</td>
<td>0.49</td>
<td>35.2</td>
<td>33.0</td>
<td>1.03</td>
<td>28.4</td>
<td>4.9</td>
<td>1</td>
<td>81.1</td>
<td>51</td>
</tr>
<tr>
<td>PHY480WR</td>
<td>$241</td>
<td>495</td>
<td>0.49</td>
<td>38.6</td>
<td>34.9</td>
<td>1.09</td>
<td>30.5</td>
<td>5.1</td>
<td>1</td>
<td>80.9</td>
<td>51</td>
</tr>
<tr>
<td>DP117B2RF</td>
<td>$245</td>
<td>490</td>
<td>0.50</td>
<td>37.4</td>
<td>33.9</td>
<td>1.06</td>
<td>29.8</td>
<td>4.7</td>
<td>1</td>
<td>80.4</td>
<td>51</td>
</tr>
<tr>
<td>ST5327B2RF</td>
<td>$255</td>
<td>490</td>
<td>0.52</td>
<td>38.8</td>
<td>33.9</td>
<td>1.06</td>
<td>29.4</td>
<td>4.6</td>
<td>4</td>
<td>80.6</td>
<td>41</td>
</tr>
<tr>
<td>FM1880B2F</td>
<td>$258</td>
<td>487</td>
<td>0.53</td>
<td>36.7</td>
<td>34.2</td>
<td>1.07</td>
<td>28.6</td>
<td>4.3</td>
<td>1</td>
<td>79.8</td>
<td>41</td>
</tr>
<tr>
<td>DP432R</td>
<td>$252</td>
<td>484</td>
<td>0.52</td>
<td>38.8</td>
<td>33.9</td>
<td>1.06</td>
<td>28.3</td>
<td>4.6</td>
<td>4</td>
<td>80.8</td>
<td>41</td>
</tr>
<tr>
<td>DP445BR</td>
<td>$239</td>
<td>457</td>
<td>0.52</td>
<td>40.2</td>
<td>34.2</td>
<td>1.07</td>
<td>30.1</td>
<td>4.8</td>
<td>4</td>
<td>81.1</td>
<td>41</td>
</tr>
<tr>
<td>ST4554B2RF</td>
<td>$214</td>
<td>450</td>
<td>0.48</td>
<td>37.5</td>
<td>33.3</td>
<td>1.04</td>
<td>28.2</td>
<td>5.1</td>
<td>4</td>
<td>81.6</td>
<td>41</td>
</tr>
<tr>
<td>DP161B2RF</td>
<td>$248</td>
<td>448</td>
<td>0.55</td>
<td>35.3</td>
<td>35.5</td>
<td>1.11</td>
<td>30.8</td>
<td>4.8</td>
<td>2</td>
<td>79.9</td>
<td>41</td>
</tr>
<tr>
<td>DP434R</td>
<td>$216</td>
<td>431</td>
<td>0.50</td>
<td>39.7</td>
<td>33.3</td>
<td>1.04</td>
<td>25.8</td>
<td>4.5</td>
<td>2</td>
<td>78.8</td>
<td>41</td>
</tr>
</tbody>
</table>

Trial Means:

| $291 | 562 | 0.52 | 39.0 | 34.5 | 1.08 | 29.6 | 4.8 | 2 | 80.4 |

* = Value calculation based on $0.52/Lb (+/-) discounts/premiums (Ranked by Value $/A), May include datapoints for which base color grade (41) and leaf grade (4) were assigned because no values for these were reported by the cooperator.

Average Plot Size: 0.32 acres
Planting Date: 5/21/07
Rows/Plot: 4
Harvest Date: 11/5/07
Row Spacing: 36 inches
Ginning Date: 12/20/07
Tillage: Conventional
Soil Type: Red Bay sandy loam

Reported by Mike Donahoe, Santa Rosa County Extension
2007 Cotton Variety Demonstration
West Florida Research and Education Center
Stip-Tillage

<table>
<thead>
<tr>
<th>Variety</th>
<th>Maturity</th>
<th>Lint Yield (lbs/acre)</th>
<th>% Turnout</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 DP 555 BR</td>
<td>mid-full</td>
<td>580</td>
<td>41.9</td>
</tr>
<tr>
<td>2 DP 164 B2RF</td>
<td>mid-full</td>
<td>499</td>
<td>36.3</td>
</tr>
<tr>
<td>3 FM 960 BR</td>
<td>early-mid</td>
<td>496</td>
<td>39.2</td>
</tr>
<tr>
<td>4 DP 147 RF</td>
<td>mid-full</td>
<td>494</td>
<td>38.8</td>
</tr>
<tr>
<td>5 PHY 370 WR</td>
<td>early</td>
<td>477</td>
<td>40.7</td>
</tr>
<tr>
<td>6 FM 9063 B2RF</td>
<td>early-mid</td>
<td>477</td>
<td>36.7</td>
</tr>
<tr>
<td>7 DP 143 B2RF</td>
<td>mid-full</td>
<td>460</td>
<td>36.9</td>
</tr>
<tr>
<td>8 DP 454 BR</td>
<td>medium</td>
<td>451</td>
<td>41.8</td>
</tr>
<tr>
<td>9 DP 161 B2RF</td>
<td></td>
<td>437</td>
<td>35.3</td>
</tr>
<tr>
<td>10 PHY 485 WRF</td>
<td>early-mid</td>
<td>434</td>
<td>39.9</td>
</tr>
<tr>
<td>11 ST 6611 B2RF</td>
<td>full</td>
<td>416</td>
<td>35.2</td>
</tr>
<tr>
<td>12 DP 515 BR</td>
<td>mid-full</td>
<td>410</td>
<td>40.3</td>
</tr>
<tr>
<td>13 DP 432 RR</td>
<td>early</td>
<td>406</td>
<td>38.8</td>
</tr>
<tr>
<td>14 DP 445 BR</td>
<td>medium</td>
<td>386</td>
<td>40.2</td>
</tr>
<tr>
<td>15 PHY 480 WR</td>
<td>early-mid</td>
<td>380</td>
<td>38.6</td>
</tr>
<tr>
<td>16 ST 5327 B2RF</td>
<td>medium</td>
<td>379</td>
<td>38.8</td>
</tr>
<tr>
<td>17 FM 1880 B2RF</td>
<td>full</td>
<td>374</td>
<td>36.7</td>
</tr>
<tr>
<td>18 ST 4427 B2RF</td>
<td>early-mid</td>
<td>372</td>
<td>38.1</td>
</tr>
<tr>
<td>19 ST 4554 B2RF</td>
<td>early-mid</td>
<td>372</td>
<td>37.5</td>
</tr>
<tr>
<td>20 DP 434 RR</td>
<td>early</td>
<td>371</td>
<td>39.7</td>
</tr>
<tr>
<td>21 DP 117 B2RF</td>
<td>early</td>
<td>349</td>
<td>37.4</td>
</tr>
</tbody>
</table>

Average Plot Size: 0.26 acres
Planting Date: 5/21/07
Rows/Plot: 4
Harvest Date: 11/5/07
Row Spacing: 36 inches
Ginning Date: 12/20/07
Tillage: Stip-Till
Soil Type: Red Bay sandy loam

Reported by Mike Donahoe, Santa Rosa County Extension
COTTON

Bt Cotton Update

Over 90 percent of cotton planted in the Southeast during 2007 was Bt cotton. The majority of Bt cotton acres planted were varieties which included the single gene Bt cotton technology Bollgard. The registration of Bollgard, which was commercialized in 1996, will expire September 30, 2009. The provider of Bollgard technology does not plan to ask for an extension of the registration due to concerns over resistance development. From an insect resistance management standpoint, the move from the single gene Bollgard technology to two-gene Bt cotton technologies is advantageous. Carryover seed (Bollgard seed not planted in 2009) will be available for planting in 2010; however the quantity available will depend on acres planted in 2009.

Two-gene Bt cotton technologies currently available include Bollgard II and WideStrike. Bollgard II was commercialized in 2003 and WideStrike was commercialized in 2005. In terms of insect control, both Bollgard II and WideStrike are superior to Bollgard. The two gene Bt cottons have a broader spectrum of activity and increased efficacy. However, the potential of caterpillar damage remains and both technologies should be scouted and treated on an as needed basis. We have evaluated these technologies for several years and have a general understanding of insect control performance. However, as these cottons are planted on tens or hundreds of thousands of acres we will learn more.

Growers should consider planting a portion of their acres to varieties with Bollgard II or WideStrike technology. Growers need to gain experience in how these two-gene technologies and varieties perform on their farm and their production system.

(Dr. Phillip Roberts, Georgia Cotton, March 21, 2008)

Thrips Management

Early season thrips are the most predictable insect pests of cotton in the Southeast. Preventive treatments at planting are used for thrips control on most acres due to the predictability of thrips infestations. Control of thrips infestations in the absence of an at-plant treatment is difficult and requires multiple well timed foliar sprays (multiple foliar sprays may flare cotton aphids, spider mites, or other pests). General observations of thrips infestations and control are listed below.

- The use of a preventive insecticide at planting provides a consistent yield response.
- Thrips infestations are generally higher in April and early May plantings compared with late May and June plantings.
- Yield impacts from thrips infestations are compounded by slow seedling growth due to cool temperatures or other stress factors.
- Thrips infestations in conservation tillage systems are typically reduced compared with conventionally tilled production systems (winter cover crops should be killed at least 3 weeks prior to planting and no green vegetation should be present at planting).
- At plant preventive thrips insecticides include:
 - Temik 15G applied in-furrow
 - Cruiser seed treatment (Avicta Complete Pak)
 - Gaucho Grande seed treatment (Aeris Seed Applied System)
 - Orthene in-furrow spray
 - Orthene seed treatment.
• The seed treatments Cruiser and Gaucho Grande perform similarly, providing about three weeks of control. Temik typically provides extended residual control (four+ weeks) compared with the seed treatments.

• Seedlings become more tolerant of thrips feeding as they develop. Small seedlings (1-2 leaf) are more sensitive to thrips injury in terms of yield loss compared with 4-5 leaf seedlings. It is unlikely that seedlings which have reached the 5-leaf stage and are growing rapidly will benefit from supplemental foliar sprays.

• Systemic insecticides such as Bidrin, dimethoate, and Orthene should be used for foliar control of thrips if needed.

• Automatic foliar thrips sprays should be avoided. In addition to the cost associated with an unneeded spray, foliar sprays increase the likelihood of pests such as aphids and spider mites developing.

(Dr. Phillip Roberts, Georgia Cotton, March 21, 2008)

Nematode Management Considerations for Cotton for 2008

Successfully managing nematodes in the cotton crop requires that growers practice good crop rotation (which is often difficult with the southern root-knot nematode) and use an appropriate nematicide in fields where the pests have reached damaging levels.

The 2008 season is an exciting one for cotton growers for many reasons, one of which being the availability of a number of nematicides for use in their fields. It is critical that growers consider a number of factors when choosing the right nematicide for the right field in order to achieve the desired results. Use of the wrong nematicide in a field will either result in unnecessary expense or inadequate protection, or both.

In deciding on the appropriate nematicide to use in a field, growers should consider the following questions:

1. Based upon soil samples analyzed for nematodes (preferably taken in the fall), how high (or low) are the plant-parasitic nematode populations in my field? How does this level compare to the economic threshold levels that I can learn about from my county agent?

2. What has been the recent crop rotation history in my field, especially in 2007? Was my previous crop cotton or one that is also susceptible to the same nematodes, or was it a crop such as peanut that is not susceptible?

3. Is my field irrigated or non-irrigated? That is, given a shortage of rainfall, can I use irrigation to take some of the stress off of the crop? (Nematode damage and yield loss is most obvious in times of stress.)

4. What are the prevalent soil types in the field? (Southern root-knot nematodes are more of a problem in lighter, sandier soils than in heavier soils.)

5. How much damage from nematodes (stunting, poor growth, premature cutout, etc.) have I observed in the field in the past?

Today, growers can choose between a fumigant (Telone II), a granular insecticide/nematicide (Temik 15G), a foliar applied insecticide/nematicide (Vydate C-LV), and seed treatments nematicides (AVICTA Complete Cotton, AERIS Seed-Applied System) and the harpin-protein product N-Hibit which is reported to reduce the build-up of nematodes in a field.
Telone II offers the greatest potential for successful management of nematodes in a field with high populations of plant parasitic nematodes if it is applied effectively. Growers who choose to use Temik 15G, AVICTA Complete Cotton, or AERIS Seed-Applied System rather than Telone II in fields with very damaging populations of nematodes potentially sacrifice hundreds of pounds of lint in yield. NOTE: Telone II currently has a 24C label in Georgia to be applied (with caution) at time of planting if so desired by the grower.

AVICTA Complete Cotton and AERIS Seed-Applied System offer the grower the convenience of a seed treatment in the fight against nematodes on cotton. Researchers at the University of Georgia have had the opportunity to assess AVICTA Complete Cotton in many trials; we have fewer data regarding AERIS Seed-Applied System. Growers who select one of these seed treatments should carefully consider the fields in which they are to be used. Nematicide seed treatments may be appropriate where nematode populations are at lower levels; however they will not provide adequate protection at higher populations of nematodes.

Temik 15G (5 lb/A) typically provides a cotton crop adequate protection from nematodes at low-to-moderate populations. In field studies conducted at the University of Georgia, Temik 15G provided better early season control of the southern root-knot nematode than did AVICTA Complete Cotton or AERIS Seed-Applied System. Temik 15G also provided higher profit and lint yields versus products that provided only control of thrips (Cruiser and Gaucho Grande) than did AVICTA or AERIS over a broad range of nematode levels.

From our research trials, there is no doubt that there are situations where AVICTA Complete Cotton produced yields greater than Temik 15G. However, in head-to-head comparisons, Temik 15G has a 2-to-1 advantage over AVICTA in terms of both winning trials and average yield advantage.

In summary, many growers can benefit to use of an appropriate nematicide in their fields. Growers should carefully select the best product for their field, considering needed efficacy, cost, and perceived convenience. Growers should balance the value of convenience versus the cost of a convenient product in the wrong field.

(Dr. Bob Kemerait. Georgia Cotton, April 7, 2008)

Herbicide Price And Burndown Options For Cotton

Mike Patterson, Extension Weed Scientist, Auburn University

The cost of glyphosate herbicide has increased significantly over last year at this time. Glyphosate in its many forms is one of the primary herbicides used for burndown (preplant foliar) applications in our reduced tillage production systems. Other herbicides are often mixed with glyphosate to increase weed spectrum and/or manage hard to kill or herbicide resistant weeds (i.e. glyphosate resistant horseweed). Apparently the world demand for glyphosate has out stripped the production this year and this has resulted in higher prices. Another reason may be the increased price of crude oil that drives our economy. What options can you consider in this situation to get optimum results in a burndown spray?

First, there are different formulations and concentrations of glyphosate products being sold. Comparing different glyphosate formulations can be confusing. One rule to remember in comparing these products is to look at the active ingredient on the product label and especially look at the pounds acid equivalent (ae) in each gallon of material. For example, a high-end glyphosate product like Roundup Power Max contains 4.5 lbs ae per gallon. Most generics contain 3.0 lbs ae per gallon. The standard or X rate of
Power Max is 21 fluid ounces per acre. The standard rate of a 3.0 lb ae generic is 32 fluid ounces per acre. Power Max has about 50% more active ingredient per gallon than the generic. Another point to compare is the surfactant load in the product. Power Max, Weathermax, Touchdown Total, and other name brand glyphosate products have excellent surfactant systems in the jug and no other surfactants are needed. Generics may or may not have good surfactant systems in the jug. Always ask the person you are buying from if the product has a good surfactant. If they don’t know, then adding additional non-ionic surfactant at 1 quart per 100 gallons of spray mix is a good idea.

Regardless of the glyphosate formulation you use for burndown, adding additional herbicides like 2,4-D (one pint or less) or Clarity (8 fluid ounces), applied 30 and 21 days ahead of cotton, respectively, can increase the control of weeds like cutleaf evening primrose and horseweed. Aim, ET, and Resource can be added to increase activity on certain broadleaf weeds without a waiting period for planting. These products along with the 2,4-D and Clarity do not offer any residual activity on future germinating weeds. Harmony Extra with glyphosate provides increased activity on several winter annual broadleaf weeds and has a 14 day planting restriction. Harmony Extra works slower than most herbicides and may require 3 to 4 weeks for optimum control. Valor (1.5 – 2 oz), diuron (1.5 pt), and Caparol (1.5 pt) all provide residual activity in addition to increasing the foliar activity of glyphosate in burndown. These materials at the rates listed require a 14 day waiting period to planting cotton.

Paraquat (Gramoxone, etc.) operates on a different mode of action than glyphosate. This can be good if you know how to use this product. On the weeds it controls, paraquat kills quickly. Primrose and horseweed are tolerant of paraquat alone, but adding a little Valor (excluding horseweed), Caparol or diuron with paraquat significantly increases the activity on these weeds. Adding 2,4-D or Clarity with the paraquat and either Valor, Caparol or diuron and you have a very good burndown mixture. Unlike glyphosate, that can be sprayed in as little as 5 gallons of solution per acre, paraquat must cover the plant to obtain optimum activity and therefore should be sprayed in a minimum of 15 gallons of solution per acre.

Finally, Ignite herbicide can be used in place of glyphosate or paraquat in burndown mixtures. Ignite has good activity alone on primrose and horseweed (including glyphosate resistant horseweed). Adding additional products mentioned above can increase both foliar and/or residual activity of these mixes. Ignite alone is weak on grass cover crops like wheat, etc. and glyphosate should be mixed with Ignite if these grasses need to be killed prior to planting.

SOYBEANS

Dr. David Wright, UF/IFAS Extension Agronomist, North Florida REC, Quincy

Increased Soybean Acreage

There has been more interest in soybean this year than in the past 10 years due to the current price and the price of fertilizer and inputs that other crops require in greater amounts. Seed should be purchased early to make sure that you get better varieties. Soybean performance trials for the Deep South can be found on the web at http://www.swvt.uga.edu. However, most of the recommended soybean varieties are already taken and varieties will have to be grown for the proper maturity group without a lot of information on them (Maturity Group V-VII). Soybean responds more to residual fertility than to direct fertilization but can respond to potassium applications on soils testing low or very low. There are several good Roundup Ready varieties on the market that make growing soybean much easier than using conventional varieties from 10-12 years ago. Soybean should be planted in rows 30”-36” apart with
subsoiling in the row. Make sure the seeds are inoculated with the proper inoculant (Rhizobium japonicum) at planting to ensure that the young soybean plants can fix their own nitrogen for good plant growth and yield. Good rotation is critical to high yield and should not be grown in the same field more than once in three years.

Soybean Maturity Group and Planting Date

Several years of research with group V-VIII soybean shows that the optimum planting date for soybean is early May through the second week of June. Earlier planting or later planting will result in lower soybean yield. The long juvenile soybean that was developed by Dr. Hinson will allow higher yields at early and later planting. However, even these varieties will have higher yields planted during the recommended planting date of May 10 to June 15. Planting a week or two earlier is normally better than planting a week or two later than the recommended planting period. There are more group V, VI, and VII soybean on the market than there are group VIII. The later group beans were developed for the deep south and the acreage has been low in these states in the last 10-15 years. In many cases, group V and VI soybean will do better under rainfed conditions than later group soybean because they mature earlier and need good soil moisture during the months of August and early September. Group VII and VIII soybean will need good soil moisture through September and early October. Group V soybean will normally be ready to harvest by about October 7-10 while group VIII soybean will be ready to harvest around November 7-10. The other groups will fall in between about 7 - 10 days apart.

Seeding Rate for Narrow and Wide Row Soybean

Soybeans are usually grown in 36” rows by most producers and this comes from tradition of having to cultivate. However, this is no longer the case with roundup Ready soybean. Herbicide resistant weeds are making it more necessary to keep residual herbicides in the program. Seeding rates will be different for different row spacings. Normally we suggest 7-9 seeds per foot of row in 36” rows which amounts to about 40-45 lbs of seed per acre depending on seed size. With no-till drilled beans in 10” rows, 3-4 seeds per foot of row are required or about 65 lbs of seed per acre. If a conventional drill is used with 7” spacing, about 2-3 seed are needed or about 75 lbs of seed per acre. If conditions are optimal at planting a few less seed can be used but if conditions are harsh at planting higher seeding rates are needed as well as for late plantings in July. Yields are normally highest planted in 30-36 inch rows when planting during the recommended dates of May 15-June 15 as compared to more narrow rows. Very late plantings should have more narrow rows to take advantage of light, water, and nutrients from plants that are smaller.

Sulfur Fertilization of Crops

Many of the fertilizers that are used today are high analysis materials that contain little or no sulfur. Most of the crops require 15-20 lbs/A of sulfur for best yields. At least this amount of sulfur should be applied with nitrogen or as Potassium sulfate, sulfate of potash magnesia or other sulfur containing fertilizers. Growers may use nitrogen materials that contain 3-5% sulfur when applying split applications and when sidedressing the crop. This practice will help keep sulfur from leaching along with nitrogen. (Dr. David Wright, Agronomy Notes, Vol. 32:4, April 2008)
DISEASE CONSIDERATIONS FOR PLANTING PEANUTS IN 2008

When considering disease management, many growers focus on the fungicide applications that are so important for the control of leaf spot diseases, white mold, and Rhizoctonia limb rot later in the season. However, the grower has opportunities to implement critical disease and nematode management tactics as the seed is planted. If the grower fails to take full advantage of these opportunities, the 2008 peanut crop may never reach its full potential and perhaps suffer devastating losses.

Below are some of the more important steps a grower can take to ensure that his crop gets a jump on diseases and nematodes this season.

1. **Consider planting date carefully.** Planting date is one of the most important considerations for the management of tomato spotted wilt disease. All else being equal, growers who plant prior to May 1st are at greatest risk to spotted wilt; the risk is lowered planting in early May, and lowest in mid-to-late May. Although the reasons for variable risk based upon planting date is not fully understood, the impact of planting date has been consistent since the Spotted Wilt Risk Index was developed in 1997. Growers who must plant peanut prior to May 1st or even in early May should consider using a more-resistant variety.

2. **Select a variety with better resistance to disease.** Growers now have the opportunity to plant peanut varieties with better resistance to tomato spotted wilt, leaf spot diseases, white mold, Cylindrocladium black rot (CBR), and even root-knot nematodes than does Georgia Green. Growers should consider planting such varieties to minimize the impact of disease later in the season.

3. **Use high quality, high germination seed.** A field planted with high quality seeds is more likely to have rapid seed germination, rapid seedling emergence, and a more uniform stand than fields planted with poor quality seed. Ensuring a good, uniform stand is a critical factor to minimize risk to spotted wilt.

4. **Plant only seed that has been treated with effective fungicide seed treatment.** Growers get a tremendous return on their investment when they use an effective seed treatment at planting. Fungicide seed treatments are effective in the management of fungal pathogens that rot the peanut seeds and fungal pathogens, such as *Rhizoctonia solani* and *Aspergillus niger*, that stunt the growth and even kill seedlings. Seedling diseases result in poor stands that increase risk to tomato spotted wilt.

5. **Plant when soil conditions favor rapid, vigorous germination and growth.** Effective management of seedling disease in peanut production is also a critical strategy to minimize the impact of spotted wilt. Spotted wilt is typically more severe in fields with poor stands than in fields with good stands. Planting seed in warm soils with adequate moisture will help to ensure that the seed germinates quickly and that the seedling grows rapidly. Rapid germinations and vigorous growth helps to minimize the impact of the fungi that cause seedling diseases and can result in a better, more uniform, stand of peanuts. The better the stand, the lower the risk for spotted wilt.

6. **Pay special attention to planting depth.** Avoid planting seed too deeply, unless absolutely necessary to capture adequate soil moisture. Seedlings that must struggle to crack the soil surface are more susceptible to seedling diseases, especially disease caused by *Rhizoctonia solani*.

7. **Take steps to manage Cylindrocladium black rot.** Cylindrocladium black rot (CBR) is believed to initially infect the peanut plant through the fine roots of the young seedling. Growers
can help to reduce the severity of this important disease by treating the soil with the fumigant approximately 10 days before planting, insuring that the fumigant is place exactly where the furrow will be made. In 2009, growers should be able to use the fungicide Proline (prothioconazole) as an in-furrow treatment to help minimize CBR.

8. **Take steps to manage the peanut root-knot nematode.** For optimum control of the peanut root-knot nematode, consider fumigation of the soil with Telone II prior to planting, used of Temik 15G at planting, and selection of Tifguard as a nematode resistant variety. Effective management of root-knot nematodes can also help to reduce the impact of CBR as well as the interaction of these two pests increases the severity of both.

Growers who consider the steps above are likely to have fewer problems with seedling diseases than those who ignore the potential impact of early season disease management strategies and tactics.

Source: University of Georgia
Peanut Pointers, April 2008

ETHANOL PLANT INFORMATIONAL MEETING

East Coast Ethanol, LLC of Columbia, S.C. intends to construct and operate four 110 million gallon ethanol plants in the Southeast region of the U.S, with one being in Florida. An informational session will be held at the County Extension Office in Milton, 6263 Dogwood Dr., on Thursday evening, April 24, at 6:00 p.m. For more information call (877) 323-3835 or visit their web site at www.eastcoastethanol.us.

The use of trade names in this publication is solely for the purpose of providing specific information. It is not a guarantee, warranty, or endorsement of the product names and does not signify that they are approved to the exclusion of others.

Sincerely,

Mike Donahoe John D. Atkins
County Director Extension Agent
Santa Rosa County Santa Rosa County